CyPPA, a positive modulator of small-conductance Ca(2+)-activated K(+) channels, inhibits phasic uterine contractions and delays preterm birth in mice.
نویسندگان
چکیده
Organized uterine contractions, including those necessary for parturition, are dependent on calcium entry through voltage-gated calcium channels in myometrial smooth muscle cells. Recent evidence suggests that small-conductance Ca(2+)-activated potassium channels (K(Ca)2), specifically isoforms K(Ca)2.2 and 2.3, may control these contractions through negative feedback regulation of Ca(2+) entry. We tested whether selective pharmacologic activation of K(Ca)2.2/2.3 channels might depress uterine contractions, providing a new strategy for preterm labor intervention. Western blot analysis and immunofluorescence microscopy revealed expression of both K(Ca)2.2 and K(Ca)2.3 in the myometrium of nonpregnant (NP) and pregnant (gestation day 10 and 16; D10 and D16, respectively) mice. Spontaneous phasic contractions of isolated NP, D10, and D16 uterine strips were all suppressed by the K(Ca)2.2/2.3-selective activator CyPPA in a concentration-dependent manner. This effect was antagonized by the selective K(Ca)2 inhibitor apamin. Whereas CyPPA sensitivity was reduced in D10 and D16 versus NP strips (pIC(50) 5.33 ± 0.09, 4.64 ± 0.03, 4.72 ± 0.10, respectively), all contractions were abolished between 30 and 60 μM. Blunted contractions were associated with CyPPA depression of spontaneous Ca(2+) events in myometrial smooth muscle bundles. Augmentation of uterine contractions with oxytocin or prostaglandin F(2α) did not reduce CyPPA sensitivity or efficacy. Finally, in an RU486-induced preterm labor model, CyPPA significantly delayed time to delivery by 3.4 h and caused a 2.5-fold increase in pup retention. These data indicate that pharmacologic stimulation of myometrial K(Ca)2.2/2.3 channels effectively suppresses Ca(2+)-mediated uterine contractions and delays preterm birth in mice, supporting the potential utility of this approach in tocolytic therapies.
منابع مشابه
Myometrial expression of small conductance Ca -activated K channels depresses phasic uterine contraction
Brown A, Cornwell T, Korniyenko I, Solodushko V, Bond CT, Adelman JP, Taylor MS. Myometrial expression of small conductance Ca -activated K channels depresses phasic uterine contraction. Am J Physiol Cell Physiol 292: C832–C840, 2007; doi:10.1152/ajpcell.00268.2006.—Mechanisms regulating uterine contractility are poorly understood. We hypothesized that a specific isoform of small conductance Ca...
متن کاملMyometrial expression of small conductance Ca2+-activated K+ channels depresses phasic uterine contraction.
Mechanisms regulating uterine contractility are poorly understood. We hypothesized that a specific isoform of small conductance Ca(2+)-activated K(+) (SK) channel, SK3, promotes feedback regulation of myometrial Ca(2+) and hence relaxation of the uterus. To determine the specific functional impact of SK3 channels, we assessed isometric contractions of uterine strips from genetically altered mic...
متن کاملCyPPA, a Positive SK3/SK2 Modulator, Reduces Activity of Dopaminergic Neurons, Inhibits Dopamine Release, and Counteracts Hyperdopaminergic Behaviors Induced by Methylphenidate1
Dopamine (DA) containing midbrain neurons play critical roles in several psychiatric and neurological diseases, including schizophrenia and attention deficit hyperactivity disorder, and the substantia nigra pars compacta neurons selectively degenerate in Parkinson's disease. Pharmacological modulation of DA receptors and transporters are well established approaches for treatment of DA-related d...
متن کاملNS19504: A Novel BK Channel Activator with Relaxing Effect on Bladder Smooth Muscle Spontaneous Phasic Contractions s
Large-conductance Ca-activated K channels (BK, KCa1.1, MaxiK) are important regulators of urinary bladder function and may be an attractive therapeutic target in bladder disorders. In this study, we established a high-throughput fluorometric imaging plate reader–based screening assay for BK channel activators and identified a small-molecule positive modulator, NS19504 (5-[(4-bromophenyl)methyl]...
متن کاملNew Positive Ca 2 1 - Activated K 1 Channel Gating Modulators with Selectivity for KCa 3 . 1 s
Small-conductance (KCa2) and intermediate-conductance (KCa3.1) calcium-activated K channels are voltage-independent and share a common calcium/calmodulin-mediated gating mechanism. Existing positive gating modulators like EBIO, NS309, or SKA-31 activate both KCa2 and KCa3.1 channels with similar potency or, as in the case of CyPPA and NS13001, selectively activate KCa2.2 and KCa2.3 channels. We...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 301 5 شماره
صفحات -
تاریخ انتشار 2011